
RESEARCH NOTE 80-18 L

MODERN PROGRAMMING PRACTICES:
IMPLICATIONS FOR HUMAN FACTORS RESEARCH

Ruven Brooks and Michael (. Samet
Perceptronics, Inc..

T) HUMAN FACTORS TECHNICAL AREA

U. S. Army

Research Institute for the Behavioral and Social Sciences

JULY 1979

ADproved for utablic release; distribution unlimited.

g1 3 26 033

Ur

U. S. ARMY RESEARCH INSTITUTE
FOR THE BEHAVIORAL AND SOCIAL SCIENCES
A Field Operating Agency under the Jurisdiction of the
Deputy Chief of Staff for Personnel

FRANKLIN A. HART
JOSEPH ZEIDNER Colonel, US Army
Technical Director Commander

NOTICES

DISTRIBUTION: PrimatV distribution of this report hi been mie by AR. Pinm address corresondence
cOncern qng distribuation of reports to: U. S. Army ROerch Institute tor the Behviora ad Social Sciences.
ATTN: PERI-TP 5001 Eisenhower Avenue, Aleltndra. Virginia 22333.

FINAL DISPOSITION: This reort may be detroyed when t is no Iloner nded. Plem do no return it to
thie U. S. Army Research Institute for the Behavioral end Social Scienol.

-N"T The tindings in this report are not to be construed as en official 0e1artneont of the Army Position.
unltss so designated by other euthorized docurnts.

RESEARCH NOT /8 -' A8
/ " }

MODERN PROGRAMMING PRACTICES:
JMPLICATIONS FOR MANJACTORS RESEARCH;,1

Ruven~rooks .ichael G/Samet // / '

-. • P rPerceptronlcs, Inc. -

'007/

HUMAN FACTORS TECHNICAL AREA

/ .

¢/ '. .. . ,

/:

U. S. Army

Research Institute for the Behavioral and Social Sciences

JULY 1979

Aaorovea for Public rlease: distribution unl,mited.
- .-

[Incl IA i fi PH
SECURITY CL.ASSIFICATION OF 'iiS PAGE 'When Dol. EnteredJ

REPORT DOCUMENTATION PAGE BEFRE CL NORM

I. REPORT UMBER 02. GOVT ACCESSION O. 3 REC T'S CATALOG NUMBER

Research Note 80-18' 4i-4 0 _____________

4. T'lT'-.Z 'and Su~btitle) S. TYPE OF REPORT & RICOD OVEREO

Modern Programming Practices: Implications for
Human Factors Research 6. PAORiG ORG. REPORT NUMBER

PFTR-1045-79-7
7 AUTrOR(s) a. CONTRACT OR GPAN7 NUMSER (,

Ruven Brooks and Michael G. Samet DAHC19-77-C-O012,- '

9. PERFORMING ORGANIZATION NAME ANO AODRESS I0. PROGRAM ELEMENT PROJEC7 -ASK
AREA & WOPK UNIT NUMBERS

U.S. Army Research Institute for the Behavioral
and Social Sciences (PERI-OS) 2Q762717A765

5001 Eisenhower Ave. Alexandria VA 22333
11 CONTROLLING OFFICE NAME ANO AOORESS 12. REPORT OATE

July 1979
13. NUMBER OF PAGES

14 -ONITORING AGENCY NAME & ADORESS(If dilffrent from Controlling Office) is. SECURITY CLASS. 'of !his report)

Unclassified
IS. 1 ECLASSiFI CATION DOWNGRAOING

SCHEDULE

16. DISTRIBUTION STATEMENT (of this ,Report)

Approved for Public Release; Distribution Unlimited.

'7 OISTRIBUTION STATEMENT 'of the aberrect entered in Block 20, It dlfferent from Report)

1. SUPPLEMENTARY NOTES

Jean A. Nichols of ARI provided valuable comments on the draft manuscript.

19 KE Y WORDS fContnue on Peerse tide it necessary and identlfy bv block number)

Computer Software Programming Conventions Software Management
Human Factors Programming Practice Software Testing
Program Design Software Design Software Tools
Program Specification Software Evaluation Structured Programming

4,0 AUOST ,4IACT 'Continue on reveres side If necoseery and Identify by block number)

Future research directions on human factors in software must be sensitive to
issues arising out of evolving software practice. Based on a historical
distinction, these practices can be divided into two groups, conventional and
modern. A series of reports prepared by six large software contractors on
the impact of modern programming methods provides a useful source for
evaluating the effectiveness of various practices. This paper critically
analyzes selected contents of these reports and summarizes their conclusions

DO 1473 OF :'' OV5 S OGSOLI-EE Unclassified

v' d' - SECuI- CLASSIFICATION OF TsIS OAGE W"an Dare Enrered,

,n s i .T.CL.,

SECUJRITY CLASSIFICATION OF THI1S PAGE(Wha Date Entered)

20. (Continued)

N~ asto the practical impact of modern programming practices. In light of the
results of this analysis, a set of future research directions for work on
human factors in software is then suggested.)

UWnclassified
SXCLJNDY CL ASSIFICATIONI OF ' JS MAGE1'',e Dore E.frrd

TABLE OF CONTENTS

Page

1. INTRODUCTION 1-1

2. A VIEWPOINT ON MODERN PROGRAMMING PRACTICE 2-1

2.1 Era I - Machine Capabilities as a Primary Constraint 2-1
2.2 Era II - Software as a Critical Constraint 2-1
2.3 Modern Vers Conventional Programming Practice 2-2

2.3.1 Two Examples of Modern Programing Practice 2-2
2.3.2 Two Examples of 1 onventional Programing Practice 2-3

2.4 Classification of MPP 2-4
2.5 Some Representative MPP 2-6
2.6 Summary 2-17

3. THE IMPACT OF MODERN PROGRAMMING PRACTICES 3-1

3.1 The Individual Experiences 3-1

3.1.1 The System Development Corporation Experience 3-1
3.1.2 The TRW Experience 3-7
3.1.3 The Sperry-Univac Experience 3-9
3.1.4 The Boeing Computer Services Experience 3-10
3.1.5 The Computer Science Corporation Experience 3-12
3.1.6 The Martin Marietta Experience 3-13

3.2 Major Findings 3-16

3.2.1 Need for Early, Systematic Testing 3-16
3.2.2 Importance of Firm Specifications 3-17
3.2.3 Formal Designs and Design Reviews 3-17
3.2.4 A Few Good People 3-17
3.2.5 Importance of Conventional Practices 3-18
3.2.6 Role of Programming Language 3-18

4. CONCLUSIONS AND RESEARCH RECOMMENDATIONS 4-1

4.1 General Conclusion 4-1
4.2 Some Suggested Research Issues 4-2

4.2.1 Techniques for Program Specification 4-2
4.2.2 Design Tools 4-3
4.2.3 Interprogrammer Communication 4-3

4.3 Reorientation of Research Direction 4-4

5. REFERENCES 5-1

" --• I Illi II lIB ~I .. I I I .. .I II I .. I . ..

ABSTRACT

Future research directions on human factors in software must be sensitive

to issues arising out of evolving software practice. Based on a historical

distinction, these practices can be divided into two groups, conventional

and modern. A series of reports prepared by six large software contractors

on the impact of modern programming methods provides a useful source for

evaluating the effectiveness of various practices. This paper critically

analyzes selected contents of these reports and summarizes their conclu-

sions as to the practical impact of modern programming practices. In light

of the results of this analysis, a set of future research directions for

work on human factors in software is then suggested.

1. INTRODUCTION

The past decade has seen the emergence of a crisis in the timely and

cost-effective production of software (Boehm, 1973; Brooks, 1975). In

response to this crisis, a number of new software practices and techniques,

bearing such names as structured programming (Dahl, Dijkstra, and Hoare,

1972), modular programming (Parnas, 1972), and top-down design (Stevens,

Meyers, and Constantine, 1974) have been developed and advocated as useful

in combating this crisis. At the same time, and perhaps, with the same

motivation, there has been an increasing interest in what might be called

human factors in software development (e.g., see Atwood, Ramsey, Hooper,

and Kullas, 1979; Shneiderman, 1979; Weinberg, 1971). This area involves

experimental study of human behavior in software production. For example,

research topics include errors in programming (Youngs, 1974), the merits

of various programming language constructs (Sime, Arblaster, and Green,

1977; Sime, Green, and Guest, 1973, 1977), debugging (Gould and Drongowski,

1974), and the cognitive behavior in writing programs (Sussman, 1976;

Brooks, 1977).

If this human factors research area is to continue to grow and be of

influence, it is important that attention be paid to issues that emerge

in the development of improved software practices (e.g., Ramsey, Atwood,

and Campbell, 1979). The role of these human factors issues is, in

turn, dependent on which of the emerging practices are found most effective

in software production and maintenance. The effectiveness of various

practices is, of course, still a very open question and the outcome of

studies done in controlled experimental settings does not necessarily

predict the outcome of use of the practices in applied situations. Further-

more, very few controlled experimental evaluations of programming practices

and techniques have been conductea.

1-I

Recently, a series of reports has become available which describes how

these new approaches actually work in practice. Prepared for the Air

Force, these reports describe the impact of what is referred to as "modern

programing practice" (MPP) on projects done by six major defense software

contractors: Computer Science Corporation (Donahoo, Carter, Hurt, and

Farquhar, 1977), System Development Corporation (Perry and Willmorth,

1977), TRW (Brown, 1977), Sperry-Univac (Branning, Willson, Schenzer,

and Erickson, 1977), Boeing Computer Services (Black, Katz, Gray, and

Curnow, 1977), and Martin-Marietta Corporation (Prentiss, 1977). Some of

the reports describe projects that involve among the largest software

systems ever built; thus, the content of these reports are a useful basis

for determining future directions in research on human factors and software.

This report critically reviews the results of MPP experience from the

perspective of human factors, to draw conclusions concerning the utility of

selected MPP and to identify potential research issues.

1-2

2. A VIEWPOINT ON MODERN PROGRAMMING PRACTICE

2.1 Era I - Machine Capabilities As A Primary Constraint

Since there is still considerable discussion as to which practices should
be considered as "modern" and since each of the reports describes the

meaning of the phrase somewhat differently, it is a necessary preliminary

to define what constitutes a modern programming practice. Once way to make

this definition is in terms of two successive eras of software practice.

The first era can be viewed as beginning with the first digital systems

and terminating, about 1965, with the introduction of hardware based on
integrated circuits and the establishment of the first university computer

science departments. Computing costs in this era were overwhelmingly

dominated by the costs of hardware (Boehm, 1973), and the biggest limiting

factor on the development of new computing applications was the availability

of machine resourcas.

2.2 Era II - Software As A Critical Constraint

The second era, which extends to the present time, is, in contrast,

characterized by software as the most critical and most costly factor in

computing applications (Boehm, 1973). As machine resources have become
readily available, the size of programs has also grown, and most sizeable

programs now require the efforts of many programmiers. Because of the

complexity of the systems, a substantial level of computer science expertise
is required for system construction and modification. This shift in the

nature of software has also produced a shift in the type of problems

encountered in computing projects. Formerly, the strongest constraints on

project completion were those of the available computing time with which

to accomplish the project. Now, since development techniques have not

kept pace with the increasing complexity of software requirements, the

constraints are more likely to be those of the labor availhble. As a

2-1

consequence, cost and schodule overruns are frequent. Additionally, since
the system builders are no longer the domain experts, there is an increasing
problem to ensure that the software performs the right set of functions
desired by the customer.

2.3 Modern Versus Conventional Programming Practice

With the increasing size and complexity of modern software projects,
several problem areas have developed which are unique to this second era
of computing. These problems include how to coordinate development of
software across multiple programmers, how to ensure maintainability of

a software project throughout its life cycle, and how to adequately
analyze ahd translate user requirements into a finished software product.
Practices intended primarily to attack second-era problems constitute
modern programming practice. They stand in contrast to practices designed
primarily to enhance the availability and accessibility of machine resources,
which will be referred to here as conventional programming practices.

2.3.1 Two Examples of Modern Programming Practice. A modern programming

practice (MPP), intended to help ensure that the delivered program meets
the customer's needs, is the use of a requirements baseline. This is a
document, written before the start of programming, that specifies the

functions to be performed by the program. It is reviewed and verified by
the customer. This practice stands in contrast to starting programming
with only an informal idea of what the customer wants and then reprogramming
the system as the customer's real needs are revealed.

Another modern practice to ensure coordination among programmers is the
use of formal design documents that completely specify the internal

structure and organization of a program. Without such documents, it is
difficult or impossible to ensure that parts of the program written by
different programmers will interface properly, and considerable time and

effort will be wasted in rewriting the code so that they do fit.

2-2

2.3.2 Two Examples of Conventional Programming Practice. In contrast

to the two MPPs described above, it is useful to view two conventional

practices that are relatively recent in origin but which still have as

their goal the enhancement of machine resource avdilability. The first of

these is the use of symbolic debuggers. A symbolic debugger is a tool

for debugging fompiled code that allows the user to refer to memory

locations by the variable names f~rom the source language program. While

such a tool can be an extremely powerful programming aid, it still must be

viewed primar'ly 3,. 3 substitute for machine resources, in this case, for

enough rach'ne)ower to use an interpreter instead of a compiler.

A second example of conventional practice is the use of hardware emulation

in which one machine can be programmed to execute the instruction set of

another. This means that a single machine can be used as a vehicle for

software development for a number of target machines. While this practice

can be of substantial benefit, particularly where software development is

done in parallel with hardware work, it still has as its main purposes

increasing hardware availability. Of course, if the target machine is

readily available, emulation is unnecessary.

A concluding remark about the distinction between conventional and modern

programming practice is that a single practice may fall into either cate-

gory, depending on the purpose for which it is used. An example is the

use of higher-order languages (HOLs). If they are used to increase machine

accessibility, so that the individual programmer can write more code

faster, then the use of HOLs is a conventional practice. If they are

used to improve the readability of the code by other programmers, then

they fall into the modern practice category.

2-3

2.4 Classification of MPP

In addition to serving the goals described earlier, MPP can be classified

according to the way in which they affect software production as being

either: technical, managerial, or informational. Technical practices

are those which affect the tools used by the individual programmer to

perform work and that might be used if the programmer were the only person

working on the project; the use of languages with control structures for

structured progranming falls into this category. Managerial practices

are those that affect the allocation or resources and responsibility;

the use of a chief programmer team is an example of a managerial practice.

Informational practices are intended to transmit information among the

members of a programming group; an example of an informational practice

is the holding of design reviews. Informational practices may also have

impact on project management because they play a role in informing

managers how well a project is proceeding, but they have no direct role

in assigning work or responsibility. Any single practice can, of course,

have major effects in more than one category.

The following section describes several representative MPP, selected

mainly as a result of their commonality across the reports. Because of

similarities between certain MPPs (and because they may be referred to

by different names in different reports), the practices are presented

in related sets: namely, scheduling practices, design practices,

programming practices, and validation practices. Along with each practice,

its classification by effect on software production is given (i.e., either

technical, managerial, informational, or some combination of these).

A categorized list of the selected MPP and their effects is provided

in Table 2-1.

2-4

TABLE 2-1

CLASSIFICATION OF SELECTED MODERN PROGRAMMING
PRACTICES (MPP) WITH REGARD TO AREAS OF PRIMARY IMPACT

Practice Technical Manaoerial Informational

Group A - Implementation Scheduling Practices

(!) incremental Implementation

(2) Build

(3) Configuration Management

(4) Stub

(5) Thread

Group B - Design Practices

,6) Top-Down Design

(7) HIPO Diagram

(8) Program Design Language (PDL)

(9) Requirements Baseline

Group C - Programming Practices

(10) Programming Conventions

11) Structured Programming

(12) Modular Programming

Group D - Valiation Practices

(13) Independent Testing

(14) Test Scenarios and Test Specifications

(15) Requirements, Design, and Code Reviews

Group E -Management Practices

(16) Program Library

(17) Chief-Programmer Team

2-5

2.5 Some Representative MPP

Group A - Implementation Scheduling Practices

(1) Incremental Implementation

Classification: managerial, informational

Incremental implementation refers to the practice of con.-

structing a system as a series of successively more complete

partial systems, termed builds. Each build possesses a

subset of the functions of the complete system. Two primary

benefits are claimed for this technique. From a managerial

viewpoint, it has the benefit that, at any given point in

time, a known portion of the entire project has been com-

pleted. Not only is this beneficial for internal management

visibility, but it can also be used to demonstrate project

status to the customer. From an informational viewpoint, this

implementation method has the advantage that it eliminates

much of the need for writing separate test drivers for each

module, since the partial system can be used as the test

environment for subsequent modules.

(2) Build

Classification: managerial, informational

A build is a completion stage in an incremental implemen-

tation of a system. It consists of sufficient parts of the

eventual system to perform some subset of the functions of

the entire system when it is complete. Unimplemented parts

of a system are represented by stubs that have the same

calling parameters or core requirements as the eventual code,

2-6

but that do no computation. A new build in constructed
from a prior one by replacement of some of the stubs with

working code. As an example, consider a system to generate

five different kinds of managerial reports. The first build

on the system might be able to generate two of these

reports; the second build might add two more of the reports,

and the final build would have all of the capabilities. A
defining characteristic of builds is that, from the customer's

standpoint, each build is a useable system. The claimed

benefits of the use of builds are that they lead to earlier

discovery of errors or problems in the system and that they

provide useful managerial information on the progress in

system construction.

(3) Configuration Management

Classification: managerial, informational

If a large software system is being constructured in an
incremental fashion, modifications must often be made to

the partially assembled system, usually as a result of
discovering deficiencies or errors. This remedial work

must usually be done in parallel with further additions

to the system. If the remedial work is done in an undisci-

plined fashion, situations may arise in which those doing

further construction on the system are unable to tell

whether problems are due to the new software that are

adding or to the remedial work. Configuration management

refers to a systematic mechanism for deciding when modifi-

cations should be made and for informing those affected.

A frequently adopted technique is to implement the system

in a succession of discrete steps, or builds. (See incre-

mental Implementation.) The majority of remedial changes

2-7

are made at the time a new build is assembled. An organiza-

tion referred to as a change control board is given the

responsibility of reviewing proposed modifications, assess-

ing their impact on the system, and determining if they

should be made inmmediately or deferred to the next build.
The claimed benefit of configuration management is avoid-

ance of the type of software instability described earlier.

(4) Stub

Classification: technical

A stub is a piece of code in a build used as a place holder

for a section of the system that has not yet been written.

It is usually designed to have the same general form as the

code that will eventually replace it. For example, if the

stub is for a subroutine, it will be defined to have the

same type and number of arguments as the eventual subroutine,
and it will return a constant value of appropriate type

and range. If desirable, it may also print a message saying

that execution has taken place. If size and time are

important constraints on the system, the stub may also be

constructed to occupy the same storage and to take the same

amount of execution time as the eventual code.

(5) Thread

Classification: informational

A thread 4s a specification of system function that consists

of the inputs needed for the function, the processing required

by it, and the output produced from it. A full system con-

sists of multiple, intertwining threads. The identification

2-8

of threads is often useful in selecting which systems

component to include in a build. As an example, if a

system can be broken down into 18 distinct threads, 6 of

them may be selected to be implemented in the first build.

Group B - Design Practices

(6) Top-Down Design
Classification: technical , informational

Top-down design refers to a methodology for system design

by starting with a global, high-level system and refining it

in a series of successively more specific levels of detail.

All parts of the system are refined to one level before

work begins on the next level. At each level, the refine-

ment process begins with those modules most central to the

computation and furthest removed from the input and output.

This procedure is distinguished from bottom-up design,

which attempts to design a few, cormmon, low-level modules

at a fine level of detail and then builds the rest of the
design around these modules. Designs also can be created

unsystematically with order of design decisions dependent

on the choice of the designers. The claimed benefit of

top-down design is that it avoids premature decisions on

unimportant aspects of a system that may unnecessarily

restrict decisions about more critical aspects of the system.

2-9

(7) HIPO Diagram

Classification: technical, informational

HIPO stands for hierarchy plus input/process/output. A

HIPO diagram shows for each process the input used by that

process, the functions performed by it, and the output

produced by it. The charts are organized hierarchically,

so that part of a process at one level may be represented

by a complete HIPO diagram at another level. HIPO diagrams

are claimed to be an improvement over flowcharts in that

they emphasize the data and the function performed rather

than the processing steps. In addition, they are better

than flowcharts for showing modular decomposition.

(8) Program Design Language (structured narrative)

Classification: technical

Program design languages (POLs) are notational systems or

languages for describing the data and control structure and

general organization of a computer program. They differ

from conventional programming languages in that the semantics

(and, sometimes, the syntax as well) are not formally speci-

fied, but are selected by the programmer to convey particular

meanings. An example of an acceptable statement in some PDLs

is "WHILE there are more cases to process, DO get next case

and add up total." A given program may be described by a

number of successive layers of POL, each describing the pro-

gram at a finer level of detail.

In comparison with flowcharts or HIPO diagrams, PDLs are

claimed to be easier for the programmer to use since they

2-10

do not require the use of special symbols, allow the use

of descriptive names of unlimited length, and are compatible
with conventional text editors and word processing equipment.

In addition, PDLs may be easier to translate into the

eventual programm~ing language. Finally, PDLs are claimed

to be more readable by other programmers and managers (see

Ramsey, Atwood, and Van Doren, 1978).

(9) Requirements Baseline

Classification: managerial, informational

Requirements baseline refers to a formal description in

functional terms, as independent as possible from a particular

implementation, of the tasks that a program or system is

supposed to perform. Ideally, this baseline remains constant

throughout the system development process and serves as a

standard against which the final product can be assessed.
This practice is designed to prevent the situation in which

the requirements for the system are so hazy at the start of

construction that the functions performed by the system must
be determined in the course of the construction process.
Not only may this lead to frequent revisions of the system

design, but it also frequently leads to customer dissatis-

faction with the delivered system.

Group C - Programming Conventions

(10) Programming Conventions
Classification: technical, informational

Progranming conventions are a set of standards of the way

code is to be written and then followed by all of the pro-
grammers on a project. The aim of these standards is to

2-11

improve the readability and comprehensibility of the code.

Often included are rules for the formation of identifier
names, rules for indenting and spacing of code, and standards

for commenting the program. Adherence to these standards

is often aided by software tools, such as formatters.

(11) Structured Programming
Classification: technical

Structured programming is used here in the restricted sense

of programming techniques that result in programs whose

associated flowgraphs possess the property of reducibility.*
This result may be achieved by the use of certain sets of

control structure primitives, such as IF-THEN-ELSE, DO-WHILE,
CONTINUE, and BREAK. These sets possess the property that

any programs written in them have reducible flowgraphs.

Alternately, the same effect may be achieved by the use of

certain coding conventions in languages with other control

structures. Claimed benefits of using the structured pro-
gramming technique are that the resultant programs are

easier to read and understand and that they are easier to
decompose functionally, which has important benefits for

program refinement and optimization.

(12) Modular Programming

Classification: technical, informational

In the modular programming methodology, a system is defined

as a collection of pieces or modules, such that the internal

A flowgraph is reducible if the edges can be partitioned into two dis-
joint groups of forward and back edges such that the for-ward edges form
a connected, acyclic graph, and the back edges consist only of edges
whose heads dominate their tails.

2-12

organization or structure of each module is as independent

as possible from that of other modules. This carries the

implication that each module performs a single, simple

function and that each module passes the minimum necessary

information to other modules (information hiding). A

number of techniques are available to ensure this modularity.

One is to require that each module return only to the calling

module. A second is to use access functions to protect the

integrity of common data structures.

Claimed benefits of this technique are, first, that good

modularization makes the division of the programming task

among individuals easier, since the independence of the

modules reduces the need for coordination among individuals.

Second, it reduces errors because the programmer need only

concern himself with writing code to perform a single,

simple function. Third, if errors do occur, good modulari-

zation is claimed to make isolation of errors easier.

Finally, if the program needs to be modified, the modification

can often be confined only to the function being changed.

Group D - Validation Practices

(13) Independent Testing

Classification: managerial

In some projects, the testing of a system is carried out

by a different part of the organization than that which

originally provided the code. This independent testing is

carried out after system integration and is aimed at deter-

mining whether there are any errors in the system and whether

the system meets the requirements. The claimed benefits for

this approach are greater objectivity and rigor in testing.

2-13

(14) Test Scenarios and Test Specifications

Classification: informational

Test scenarios and test specifications are alternate ways of

referring to the practice of preparing formal descriptions of

the testing that should be performed on a build or on a complete

system. These techniques stand in contrast to informal test

procedures that are left to the discretion of the system

implementors. Given such formal descriptions, the actual

testing may be carried out either by the implementation

group or by an independent test organization. The claimed

benefits of this approach are the same as those for inde-

pendent testing, namely greater objectivity and rigor in

testing.

(15) Requirements, Design, and Code Reviews

Classification: informational

Requirements, design, and code reviews are terms that refer

to the verification of the completeness and accuracy of a

stage in system development by holding formal reviews of the

quality of the system. The mechanisms used include oral

presentations, inspection of documents, and informal simula-

tions or walkthroughs. The requirements review is usually

conducted by the customer together with the organization

building the system. Design reviews often involve the whole

development staff, while code reviews usually involve only

one or two other programmers. The intent of such reviews is

to uncover errors and inconsistencies as early as possible,

before they can impact on further system construction.

2-14

Group E - Miscellaneous

(16) Program Library

Classification: technical, managerial, informational

Related concept: team or project librarian

A program library is any organized system for ensuring access

by different personnel to common collections of software.

The software can include individual source and object modules,

data, macro and parameter definitions; partial or prelimi-

nary versions of entire systems; commonly used simulations

and test generations; and error or exception reports and

documentation.

A number of goals are claimed to be advanced by this tech-

nique. These include:

(1) Standardization of module interfaces through common

data and parameter definitions.

(2) Providing a stable debugging environment by controlling

access to partially built systems.

(3) Indreased management visibility of project status by

the use of status information associated with library

entries.

(4) Ensuring adherence to coding conventions by making

adherence a precondition to library entry.

(5) Ensuring updating of documentation by requiring simul-

taneous modification of a program and its documentation.

(6) Protecting system integrity by keeping modification

history and backup versions.

2-15

Program libraries can be implemented mechanically by

controlling access to card decks or they can be accom-
plished through software such as loaders and special

library control programs.

(17) Chief Programmer Team

Classification: managerial

This term refers to a particular organization of programming

groups in which a single individual, the chief programmer,

assumes complete technical and managerial responsibility for

a programming project throughout the design and implemen-

tation phases of the project. Besides the chief programmer,

the team consists of a backup programmer, who assists and
backs up the chief programmer, and a project secretary!

librarian. In addition to these core members, other team
members may be added as needed for various durations.
Typical long-term additions might include additional support

programmers, analysts and administrative assistants. Short-

term additions might include specialists in finance or

contracts and programmers specializing in one area, such as

file 1/0.

The claimed benefit of this organization is that, for
medium scale projects (less than 100,000 lines of code),

placing the technical responsibility in the hands of a

single highly competent inc'ividual eliminates the problems

of coordination that result when this responsibility is
fragmented and spread among a group of individuals.
Additionally, placing of managerial responsibility in the

same hands as the technical direction insures harmony between

technical and managerial goals.

2-16

2.6 Summary

A historically based distinction has been made between conventional pro-

gramming practices, intended to enhance machine availability and accessi-

bility, and modern programming practices (MPPs) that have as goals:

(a) insuring that the delivered software meets the user's needs; (b) coordi-

nating among many programmers working on the same project; and (c) increas-

ing the ease with which software can be modified and maintained. Within

the general class of MPP, a further distinction has been made between

technical, manaaerial, and informational practicds.

2-17

3. THE IMPACT OF MODERN PROGRAMMING PRACTICES

3.1 The Individual Experiences

The reports from the six contractors represent a wide range of programmi-

ing experience. They vary in tasks, size, effort expended, as well as

in machines and languages used. In terms of tasks performed, they

included database management systems, scientific data analysis systems,

and on-board real-time computer systems. The smallest project reported

on contained less than 3,000 lines of code and took just over half a

person-year to complete; the largest project involved about a million

lines o;' code and 600-person years of effort. Machines used ranged from

mini-computers to the largest commercially available processors; and

languages included FORTRAN, ALGOL, CMS-2, JOVIAL, and a variety of

assembly languages. In addition, the reports describe the utilization

of different analysis methods for arriving at conclusions, including

interviews with project staff, application of the delphi technique, esti-

mation of comparative program sizes, and examination of project documents.

Finally, across the projects many different modern programming practices

(MPPs) were employed and reported on. Selected programming experiences

of each contractor are briefly described and analyzed in this chapter;

the specific projects covered are cataloged in Table 3-1, which also

summuarizes project characteristics.

3.1.1 The System Development Corporation Experience. The System

Development Corporation (SDC) report (Perry and Willmorth, 1977) and

recommendations are based on experience from two projects, COBRA DANE,

a high-technology space surveillance system, and the Air Force Satellite

Control Facility's COMPOOL - Sensitive System, a software tool, similar

to a database management system, used to define and control data

structures shared by a number of programs. The COBRA DANE project in-

volved approximately 50 technical staff and produced about 40,000

3-1

TABLE 3-1

SUMMARY OF CONTRACTOR PROJECTS

TAC77R SU' EFT ANGUAGE 0',AL'SIS' 'qAC:ES JSED

3:ate 40.00 a0~ ~ TA 12:5,7

2Oias VIAL See -ote 4.

.iteli' e '-cxing :.200.400 50& ORTRAN
PCP 5.3.1011

IZ_3.14.

Sierry-nivac

'd~iqationai 1'-ogram 3040 52.5 MS-Iy .. 3,.4

3zauit7-, '"'grm 500,000 .46.7 .z A 3,4
.5.500 092.2ntral .6.60

Doera3tig ivsteil i.2_4

,ed;-7-;Te .'ocess.320 :. 4 1...

i0ceing 2-,outr erv ie-ces

.fu~to 3.300 5.3 ;LOL.125331
,Cnt3 , A~ ,0 ssemboler

J5i~aa 80,J00 3z.3 -080L 120
*"Oaei,,q 4 54
-anouage

'anassIment 40,400 j.5 FORTRAN2

4
.esource 796.400 42.3 -.080L 12353

* 4loute 7c-ence .4roation

'Is~e 4ntrol31,0.:0.33273.:.M.

Jeta 4c-.ustion)4.;00 5() ,S222325
.ords 3110...

:.ima,IdCantrol5.0 (2 M-

Mart, e-'4r etta

IiK!Iq '
4
ission '78.475 '.48.5 ORTRAN

I '~nnin, .2 a,,oqramsl :srds - sebe

-'eq -Inder 400.200 :75.2 Assembler A -2-3,'
- ' gt "'sruim ns-rsctios

I41iqSytm 3,200 "0.2 Assembler A

,ize naicates 'ine if :3ae iniess atilerise soecl'4.

l -'s ctln'sues. ' C'is 1 &e'h *'esmcue, :-,tcf :.'cArjr-,e ;rai'rn:!

ina '. ' VOe ICC I "' 2d r-Q. "elwe. a'o Se -:qCs on'r

3-2

statements, mostly in FORTRAN, but with some assembly language subroutines.

The COMPOOL project consisted mainly of revisions to existing programs

and systems, so that no overall size figure is easily obtainable, but

the magnitude of effort seemed similar to that of the COBRA DANE project.

The data collected to evaluate the practices used on the COBRA DANE study

consisted of source program listings, design documentation, program

library logs, minutes and records of the configuration control boards,

interviews with documentation writers and test team members, and interviews

with project members and managers. These data were not quantified or

analyzed in any statistical or formial manner, so the conclusions of the

report are based on the impressions and insights of the report's authors.

The analysis of the COMPOOL system was oriented towards the impact of the

COMPOOL system on the other projects that used it, not on the practices

used in constructing the system itself. As in the COBRA DANE case, the

analysis was qualitative and impressionistic.

COBRA DANE Project

The COBRA DANE project used five major MPPs: configuration management,

programming conventions, program library, chief-programmer teams, and data

structure management. The major findings with respect to each of these
practices are summarized below.

Configuration Management. The term, configuration management or config-

uration control, as used in COBRA DANE included the holding of preliminary

and critical design reviews, the specification of testing of builds,

and monitoring changes and updates to builds. Normially, only the last

function is included under configuration control, but all these functions
were apparently grouped together under this heading since they were all

under the control of the same managerial structure. This structure con-

3-3

sisted of two control boards, a joint configuration control board, which

handled hardware changed and their interface to the software, and an

internal configuration control board responsible for internal software

design.

The grouping of all of these functions under this one organizational

structure was, in turn, due to a failure to create a firm set of perfor-

mance specifications for the system before work on it was begun-- the

final performance specifications were, in fact, written after completion

of the software! This led to constant revisions of the design, as well

as of the code, which were all coordinated by the change control boards.

Surprisingly, this problem did not appear to impact on system delivery,

though the error rate in the delivered code was somewhat high. Whether

this is because the design changes were, in fact, minor or because the

change control mechanism overcame the problem is not clear from the report.

Programming Conventions. The programming conventions used consisted

of an explicit and detailed set of commenting conventions, indenting

and paragraphing conventions, and module and variable-naming conventions.

Also included under this heading was the division of the system into

modules, since this was partially under the control of the individual

programmers and was indicated by the use of modularity conventions. No

particular attempt was made to follow the conventions for structured
programming in FORTRAN.

All the conventions were seen as having a net positive effect on
programing effort, but no estimates were made on the magnitude of this

effect. The authors of the report did seem to feel that the comments

were particularly valuable, noting that maintenance programmers often

inserted such commentary if it were missing or inadequate. They also

noted that programmers felt that annotation of data items was more impor-

tant than that of processing steps.

3-4

Program Library. An incremental implementation policy was followed in

the construction of the system, and the main goal of the system library
was to control changes to the builds. In addition to custody over the

builds, the system library also contained a database on software errors

and problems. Rather than having team librarians, a single system
librarian maintained a single library for the whole project. After

approval of any changes by a control board, this librarian added update
decks supplied by the programmers to the system library, along with

control information about the status of the program. The librarian was
not, however, responsible for the accuracy of the programs. An aspect

unique to this project was that the system librarian, not the programmers,

was responsible for providing stubs for incomplete systems components.

The program library was considered to have met its main objectives of

providing close management over the developing product and of improving

programming efficiency and convenience. However, the use of a single

library for all teams apparently was not entirely successful. In the

latter stages of the project, changes to the system were made at a high
rate, and each of the programmuing teams began to maintain its own version

of each build to ensure a stable enough environment for completion of

their part of the system.

Chief-Programmer Team. The COBRA DANE structure departed from a formal

chief programmer team architecture in the use of a single librarian for
the whole system rather than having separate team libraries. While the
overall impact of chief programmer team organization was believed to have
been extremely beneficial, two problems were noted. The first was a

tendency for the chief programmers to give higher priority to technical

than to administrative matters, with the consequence that unresolved
inter-personal friction may have, on occasion, disrupted plans and re-
duced morale. A second problem was that, since there were multiple teams,

a need arose for coordination among chief programmers. The notion of

chief architect was suggested in the project report, but the need for

such an individual may be only a manifestation of the lack of clear

performance specifications.

Data Structure Management. Because many different parts of the system
used the same common data, a mechanism was needed to specify the organi-

zation of the data. COBRA DANE set up a database library, similar to the
program library, which was administered by a database coordinator. The

jobs performed by the coordinator were, among others, thie naming of
global database entries, giving initial values to system constants,

checking adherence to naming conventions for global data, and providing

listings of database contents. As with the program library, changes to

the database had to go through change control procedures, and the database
coordinator was not responsible for maintaining the correctness of

programs in regard to these changes. While the database library was seen
as ;iaving an essentially positive impact, it did not eliminate the

problems of uncoordinated changes to the database. This was apparently

because there was no mechanism for automatically updating programs that

were affected by a database change, so that changes "tended to ripple

through the system, impacting in unexpected places."

COMPCOL Project

The COMPOOL project involved a data management system designed to ease the
interchange and common usage of data between programs. The system con-

sisted of a number of components, such as a compiler that could access

common data definitions, loaders sensitive to symbolic names, and
managerial procedures for reviewing and controlling changes to the data-
base. No actual data on the impact of the system is presented in the

report; however, perceived benefits fall into three groups: work speci-

fication, improved resource utilzation, and configuration management.
The work simplification was seen as occurring because the number of data

3-6

declarations needed was reduced, because automated load and link operations

were provided, and because a symbolic debugger was available. Improved

resource utilization was seen as a result of improved storage sharing

beLween programs and of the elimination of data redundancies. Finally,

the standardization of data structures and interfaces and the centrali-

zation of data sources were held to aid overall system management.

3.1.2 The TRW Experience. The report from TRW (Brown, 1977) is based
on the experience with the Systems Technology Program (STP), a descendent

of a real-time processing system originally designed as part of the site

defense system for the Minuteman system. At peak, the project employed

more than 400 staff and the total size of the project exceeded 1,000,000

instructions. The system requires a dedicated CDC-7600 computer.

The report on the role of MPP in the STP project was based on data
collected from two surveys of project personnel. The first survey con-

cerned general MPP and was constructed using a modified Delphi technique

in which preliminary surveys were used to select those MPP that were most

likely to be -important. A total of 11 MPP were included in the final

survey. In the final form of the questionnaire, respondents were first

asked to rank the impact (positive or negative) of each of the 11 MPP on

each of 12 software project problems, such as schedule overrun or lack of

conclusive testing. They were then asked to rank order the problems by

importance and to rank the MPP by their overall impact on productivity.

A total of 67 respondents were used, representing a cross section of

STP personnel.

The second survey was intended to gather data on the impact of specific

programming practices. A total of 54 raters, again, selected to be a

cross section of project personnel, were asked to rate each of 18 pro-

grammring practices as to its effect on each of 30 software characteristics.

Examples of the practices are the use of a particular statement label

format, the use of only labeled conmmon, and the use of variable naming

conventions. Examples of the characteristics are code auditability,

testing thoroughness, and execution time.

3-7

A number of different analyses were carried out on the data from the

first survey to explore the relationship between MPP and perceived problems.

These analyses revealed that the most significant problems were cost over-

run and inadequate satisfaction of real requirements. As might be expected

from these problems, the MPP deemed of greatest value was requirements

analysis and validation. Following closely were baselining of requirements

specification and the completion of an entire preliminary design (before

detailed design and coding). Of low value were enforced programming

standards, independent testing, and software configuration management,

consistent with low rankings of maintainability and poor documentation

as problems.

An interpretation of these findings can be made on the basis of a situa-

tion not uncommon in projects of the magnitude of STP. During the five

year life of the project, the goals of the project underwent several

major changes, mainly as a result of congressional action. In such a

situation, it may have been the case that the delivered software, no

matter how bug-free, failed to perform the needed functions. If the

differences were large enough so that extensive sections of code had to

be scrapped and written anew, then it is expected that maintainability

would receive a low rating as a problem. Practices such as independent

testing and configuration management would, consequently, be seen as

having lesser benefit.

The results of the second survey show that strong positive impact on

software was shared by the use of four programming practices: detailed

text description of the purpose, function, and interfaces of modules;

macro flowcharts describing system organization and the organization of

individual routines; preface commentary standards; and in-line commentary

standards. These can all be described as giving information on code

functioning that is not an integral part of the code itself. Practices

such as naming conventions or modularity conventions, which could be

considered integral to the code, received weaker positive ratings.

3-8

3.1.3 The Sperry-Univac Experience. The Sperry-Univac report (Branning,

Wilson, Erickson, and Schaenzer, 1977) draws on the experience derived

from the use of rPP on the development of four naval command and control

systems. The systems were coded mostly in the CMS higher-level language

with a range of assembly language usage that peaked at 34% for one pro-

ject. For two of the projects, nearly all software development was done on

a host machine for a smaller target machine. Project sizes ranged from

13,150 to 500,000 source lines of code, with manpower utilization ranging

from 9.5 to 246.6 person-years. An interesting feature of three out of the

four projects is that they were additions or upgrades to existing programs.

The methodology used to collect data on MPP impact was a survey of project

personnel about the tools and techniques used and their perceived effective-

ness. No formal analysis was carried out on the effectiveness estimations;

however, in regard to one group of practices, a formal effectiveness mea-

sure was used. This measure was obtained by making a performance rating

for each program and comparing the performance of two of the programs that

used the group of practices with two that did not. The performance measure

was derived by summing the number of lines of code and the number of pages

of documentation, multiplying them by an estimated program complexity fac-

tor, and dividing the result by a person-months figure. The results showed

that the programs that used the groups of practices needed only 84-87'0 of

the resources required by programs that did not employ the practices. An

interesting note is that the programs averaged 23 lines of code per page

of documentation.

The group of practices was referred to as top-down program development and

consisted of formal requirements baselining, top-down design including

the use of design tools, the holding of formal design reviews, and in-

cremental implementation and associated configuration management. The

top-down design tools included a program to produce drawings of the

relationship between various parts of the design along with summary tables

linking modules to paragraphs in the design document. A form of program

design language, referred to as "structured narrative" was used also. The

3-9

IF

incremental implementation was done as a series of four builds. These

builds were specified as part of the design process, and the stubs were

constructed to utilize the same core and processing resources as were

estimated for the final project. The opinion of the report's authors

seemed to be that the incremental implementation was a particularly

desirable practice.

In addition to the design display program cited above, another software

tool employed by the project as a MPP was a design flow trace program.

This program took as input a specification of the data used by each module

and produced a trace of information flow throughout the system. The authors

felt, however, that this tool was of reduced usefulness since the infor-

mation on each module had to be entered manually.

The report also lists a number of software tools that do not, in fact,

qualify as MPP. For exaimple, utility programs for saving and restoring
drum files from magnetic tape seem to simply make more machine capabilities

available to the user, rather than contributing to any of the goals of

MPP. Nevertheless, the authors of the report felt that the use of these

tools contributed to the enhancement of productivity.

3.1.4 The Boeing Computer Services Experience. The Boeing Computer

Services (BCS) report (Black, Katz, Gray, and Curnow, 1977) is based on

data collected on five, in-house programmiing projects: namely, an

engineering design support system, a compiler for a cost estimation model-

ing language, a database management system, a computer system performance

analysis program, and a wiring planning system. In comparison to the

systems reported on from the other contractors, these were quite small,

ranging from 0.6 person-years and 2,890 lines of tode to 82.6 person-

years and 240,000 lines of code. The data that were collected on each

program consisted of person-month figures for each phase of development

and of the results of a questionnaire answered by the project manager

3-10

questionnaire answered by the project manager about the programming

practices used on the project. Analysis of this data involved a formula

for estimating the man-months of effort required on a project. This

formula, which has been developed on projects that did not use MPP, was

based on the amount of kind of programming required in a project and

was accurate to 15'..

Using this formula, an effort estimate was made for each of the five

projects. Three of the projects were more than 15"' below estimated effort,

two of them by more than 80c,. The questionnaire results were then analyzed

to create a list of MPP unique to those projects that were below cost

estimates. This list contained the following thirteen practices: formal

task assignments; formal reviews, document pertinence; unit development

folders; construction plan; review prior to coding; interface conventions;

code organization and comments; code verification; review for quality;

end item inspection; test formalism, and change control board. Formal

task assignments refers to the practice of giving project staff formal,

written task assignments. Formal reviews and review prior to coding cover

practi ces rel1ate d to requirements and design reviews. Document pertinence

and unit development folders both refer to particular approaches to

controlling and maintaining documentation throughout all phases of a

project. The use of a construction plan and a change control board is

part of stepwise implementation, though the control boards in this case

were apparently occasionally used to resolve inadequacies in the require-

ments specification. Interface conventions and code organization and

comments refer to naming, commentary, and modularity conventions. (All

five projects used structured programming constructs.) Finally, code

verification, review for quality, end item inspection and test formalism

refer to -.ode testing practices; they all require as a prerequisite a

sufficiently formal design so that specific, testable functions are

assigned to each module of code.

3-11

In addition to those practices whose benefits could be empirically valid-

ated, the authors felt that two other practices were important in project

success as prerequisites fur other practices. These were the use of top-

down design and design verification. On the other hand, despite their pre-

sence in the list, the authors did not feel that interface conventions and

coding conventions were significant sources of benefit since their use was

mandated by considerations other than contribution to project performance.

3.1.5 The Computer Science Corporation Experience. For their study of

the impact of MPP, the Computer Science Corporation (CSC) researchers

chose three naval shipboard commiand and control systems. All of the

projects used the CMS-2 language, and the final systems ranged in size

from 94,000 words to 310,000 words. No personnel staffing figures are

available from the report. In order to evaluate the impact of MPP on

these projects, the report authors initially tried to collect resource

utilization data that could be used for evaluation. Because of the post-

hoc nature of the study, such data proved unavailable. Faced with this

difficulty, they then based their analysis on their own expert judS;cen

and on the judgment of other CSC staff.

They began their analysis by identifying twelve different kinds of prob-

lems or errors that can occur in a piece of software; examples include
incompatibility in data flow between routines, incorrect data manipulation

within a routine, and failure to supply a capability specified in a
requirements document. For each phase of software development, the per-

centa~e of problems or errors falling into each class was estimated.

Another matrix was then constructed in which each of 26 MPP was given a

value representing the extent to which it reduced each of the twelve types

of problems. The product of these two matrices yielded a single overall

goodness value for each MPP.

3-12

While this procedure is probably superior to just ranking each of the MPP,

it does have an unfortunate drawback; use of unweighted error rates does

not capture the amount of damage done by an error. As an example, while

errors in meeting requirements are common in the analysis phase, they

do little damage there; on the other hand, their occurrence in final

system integration is often catastrophic. Thus, the conclusion that

programmer code reviews have the highest impact of any MPP is suspect.

While such reviews do catch many of the types of errors listed, they

probably do not catch the most damaging errors, such as failure to mee t

requirements.

The high ratings given to chief programmer teams and to the practice of

having a single individual in charge of each build, on the other hand,

seem to have a more solid foundation. Both these practices involve put-

ting important areas of technical control in the hands of a single indivi-

dual. Likewise, the high rating given to the use of structured walk-

throughs also deserves attention. This type of review and the use of

design reviews in general also received favorable comment elsewhere in

the report. Also noteworthy was the moderate rating dJiven to structured

programming, at least in comparison with other technlquics.

3.1.6 The Martin Marietta Experience. The Viking project (Prentiss,

1977) conducted by the Martin Marietta Corporation employed three major

software systems. The missions operations software consisted of the

ground-based programming for mission control and data analysis. It com-

prised some 280,000 source statements and had approximately 24,000 pages

of documentation; these were produced with 148.5 person-years of effort.

T- e flight software consisted of programs for the on-board computers of

the Viking orbiter and Viking lander; basic software consisted of 20,000

instructions developed at a cost of 134.0 person-years. An additional

200,000 instructions and 41.1 person-years were invested in emulation,

3-13

simulation, and diagnostic support software. The svstem test software

was used to control and monitor hardware tests on the orbiter and 2ander.

It needed 133,000 assembly language statements requiring a 50.' person-

year investment. Since no formal data collection techniques were employed

to evaluate this effort, the report represents the experiences and

impressions of its authors.

The Viking report is an extremely valuable source of insight both as to

the impact that traditional programming practice can have on MPP and as

to the effects that inexperienced management can have on MPP success.

All of the Viking software efforts were characterized by exceptionally

large amounts of time spent in testing and debugging. In the missions

operations software, for example, this accounted fcr 55-0 of project

effort, over and above coding time. Software delivery as apparently

frequently behind schedules and only delays in other aspects of the

project saved software delivery from being a major roadblock to missions

execution.

A variety of sources of difficulty were responsible for these delays.

In the case of the rissions rperations software, at least one of these

difficulties was simply inadequacy of computing resources to support

software development. First, software development was done at two

different sites using four different computing systems from three

different manufacturers. While all of these systems supported FORTRAN,

the dialects were sufficiently different to require a standardization

and conversion effort that added about ten percent (1b person-years) to

project requirements. Furthermore, time availability on the target system

consisted only of large blocks of time provided in the evenings and on

weekends, and the effect of this situation was that testing was often

rushed and unsystematic.

3-14

A related problem occurred in the development of the z-ystem tst software.

There, the problem was not availability of computing resources, but rather

the quality of the resources. The computer, purchased to support the

system, was poorly chosen. To quote, 'the 1/O portion of the computer

had design problems, the FORTRAN compiler contained so many errors as

to make it useless, the bit/byte instructions worked so slowly that only

limited usage was allowable...' (Prentiss, 1977.)

In addition to the computing resources problem, Viking also suffered from

problems caused by management with little software expertise. At one

point, for example, management arbitrarily ordered a five month speedup

in delivery of a part of the system. The result was that other parts of

the system, needed to use the programs in question, were not available

and the delivered programs could not be used. On another occasion, man-

agement ordered delivery of programs prior to integration testing, with

the result that many redeliveries of the programs were needed.

Along with these lessons on the effects of inadequate computing resources

and poor management, the Viking experience offered some insight into the

beneficial effects of good software tools. Two examples are particularly

noteworthy. One was a file backup and retrieval system that largely

compensated for inadequate disk storage on one of the systems. The other

was an emulation system for the on-board computers that allowed substantial

software to be developed prior to the Final selection of the on-board

system; the software sizing obtaied from this preparatory work played an

important role in this final selection.

In regard to the use of MPP, two practices seemed to be of particular

benefit. The use of preparatory builds prior to the delivery of the final

software was regarded as essential to the successful development of the

!,issions operations system. Also of value was the use of a management

3-15

structure which involved a "cognizant engineer" and a "cognizant pro-

grammer." The cognizant engineer was responsible for writing the require-

ments document for each program and for certifying and accepting the

delivered oftware. The cognizant programmer played much the same role

as a chief programmer in a chief programmer team.

3.2 Major Findings

As can be seen from these descriptions, the reports covered quite a wide

variety of kinds and environments for software development. With this

diversity of situations naturally came a diversity of software practices

so that perhaps less than a quarter of the practices used wee common to

all the projects. Moreover, it was often difficult to separate the im-

pacts of different techniques within the same project. Any conclusions

made from the project experiences must, therefore, necessarily be more

impressionistic than analytical. Nevertheless, the studies yielded a few

clear conclusions of the relative merits of different MPPs.

3.2.1 Need for Early, Systematic Testing. Practices that lead to system-

atic, rigorous testing of systems as early as oossible in the development

period clearly had a beneficial effect in many of the projects. These

practices most frequently were incremental implementations in which each

build was intended to meet an explicit set of performance criteria. Other

frequently used practices were programmer peer code reviews and the use of

independent test organizations to verify module accuracy. Two explanations

can be suggested for this effect. One is that earlier visibility of

deficiencies actually reduces the effort spent on correcting errors, since

the effects of the errors do not propagate as far. An alternative expla-

nation is that early error detection does not actually reduce the time

spent on error correction, but, because the errors are found sooner, there

3-16

is more opportunity to correct errors without schedule slippage. While

the first hypothesis has more a priori appeal, rione of the studies contain-

ed sufficient evidence to refute the second one.

3.2.2 Importance of Firm Specifications. A necessary prerequisite to

the success of a MPP (or a conventional programming practice) is the avail-

ability of a firm set of specifications as to what tasks the final soft-

ware product is to perform. While the availability of such a set of

specifications is usually automatically assumed, the rigor and clarity of

the specifications can have an extreme impact. Several of the projects

noted the impact of having, or not having, a baseline of functions that

the system was to periorm, and one project (performed by TRW) noted changes

in specifications as the single greatest problem in system construction.

3.2.3 Formal Designs and Design Reviews. The completion of designs

prior to coding and the use of design reviews (also called walkthroughs

or structured walkthroughs) were practices that many of the projects

found beneficial. While the technique of top-down design received some

favorable comment, the reports seemed to indicate that any other techniques

that achieved a completely specified design would have an equivalent

effect. Design tools, such as HIPO charts and progam design languages,

were also effective.

3.2.4 A Few Good People. Three of the projects found benefit from

management structures that placed substantial technical responsibility

in the hands of a few key individuals, whether they were referred to as

chief programmer, build leader, or cognizant programmer. The benefit

from this organization may occur either because it takes advantage of the

technical knowhow and performance of superior individuals or because the

individuals, regardless of their own skills, are able to coordinate the

activities of others.

3-17

.. 'i

3.2.5 Importance of Conventional Practices. As illustrated by the

Viking project, in particular, adequate computing resources do not guaran-

tee a project's success, but the lack of them can potentially cause its

failure. If computing time is difficult to obtain or if the system

being used does not have sufficient memory or file storage, then the

positive benefits of MPP are not likely to be realized.

A similar comment holds for the adequacy of support software. One project

reported major difficulties due to an inadequate file backup-restore

system, while another reported a batch runstream controller as being of

significant benefit to the project. MPP are not likely to be of much

value in a project unless the project also has available accurate

compilers, complete operating systems, and functional support utilities.

The other side of this issue is that abundant machine resources and good

support software cannot compensate for poor management or inadequate

system design. No matter how available machine time is or how easy it

is to manage files, the project will fail unless the programmers are work-

ing on the right tasks. Additionally, there was some suggestion that

there was a point of diminishing returns for additional machine resources

or support software.

3.2.6 Role of Programming Language. Surprisingly, the report contents

offered very little comment--positive or negative--on the relative merits

of different programming languages. Additionally, the results on struc-

tured programming (in the sense of goto-free control structures) from

those projects that used it indicate that its effects, if any, are weak.

On the other hand, program design languages and standards for commentary

received positive evaluations in several projects.

3-18

A possible explanation for these findings is that a program can be con-

sidered to have two aspects: It can specify (to the machine) the compu-

taion to be performed, and it can communicate to other programmers the

original program writer's intent. For projects with many programmers,

the later aspect becomes prominant. While both these aspects are usually

conveyed primarily by the programming language, this will not be the case

if there are other means, such as various kinds of documentation, by which

programmers can convey their intent. Relative to the expressive power

of documentation such as system designs and module prologues, programming

language differences may well be insignificant.

3-19

4. CONCLUSIONS AND RESEARCH RECOMMENDATIONS

4.1 General Conclusion

The analysis of the reports provided by the software contractors concern-

ing their experiences with the use of various modern programming practices

(MPPs) leads to a general conclusion about the impact of these practices

upon software-generation performance. In keeping with the classification

of MPP as being either technical, managerial, and/or informational in

intention, it seems that the informational domain has the greatest impact.

That is, practices classified as being partially or wholly informational

were found to be particularly worthwhile and clearly had more impact than

those that were solely technical or managerial. Alternately stated, those

practices found most advantageous helped programmers learn about how the

part of the program written by others worked or was planned to work. As

an exnmple. if, because of a failure in the information that has been

supplied, a programmer writes a module that does the wrong job, the good

technical qualities of the programming language in which it is written or

the power of the symbolic debugger used to test it will have little

positive effect. Similarly, good management tools for distributing modules

among programmers will not be of much use if the module the programmer

is told to write does not fit with the rest of the modules.

A decade ago, Nickerson (1969) stated what he felt were significant prob-

lems for research in human-computer interaction: namely, (a) development

and evaluation of conversational languages; (b) investigation of how

use-patterns adopted by users depend on system characteristics, and on

systems dynamics in particular; and (c) description or modeling of human-

computer interaction. On the basis of the present analysis an additional

significant problem might be added: that is, the development and evaluation

of tools and techniques for describing how a computer program is constructed

and what it does or is expected to do. Such tools and techniques form

4-1

the basis for communication among programmers about programs, and the

accuracy and completeness of such communication has a profound impact

on the system construction process. The availability of, say, a design

description device that reduces or eliminates the need for incremental

implementation would greatly reduce construction times for most large

systems. Research on the evaluation of such description tools and

techniques should, therefore, be of high priority for human factors

research.

4.2 Some Suggested Research Issues

4.2.1 Techniques for Program Specification. Both the initial specifi-

cation of a program and the specification of test outcomes involve des-

criptions of the functions to be performed by the program. The quality

of the proqram, or of the test results, is dependent to a significant

extent on the accuracy and completeness of these specifications in

reflecting the customer's needs and desires. Human factors research on

tools and techniques for extracting and representing this information should,

therefore, be useful in improving both the original specification of the

design and the MPP used to achieve early, complete testing. As a first

example of a kind of research that might be done, consider the problem of

describing the relationship between an output and the set of inputs that

produce it. One way to do this is by a decision table; an alternate

way is by the top levels of a HIPO chart. A worthwhile research activity

would be to investigate whether there is a class of problems for which

one device is superior to another.

A second example of the kind of research needed comes from the problem

of verifying that a set of specifications is complete. One way of doing

this is to walk through a simulation of the inputs and outputs of the

eventual system. Another is to create a preliminary design for the

internal structure of the system and to hold a review of the operation

4-2

of this internal design. The human factors research issue here is a

determination of the classes of requirements omissions that are best

found by each verification technique.

4.2.2 Resign Tools. In addition to early testing and completion of

specifications, the availability of a complete and rigorous design also

was found to have a salubrious effect on project success. An area of

research focus that should contribute to the availability of such designs

is concerned with tools and techniques for specifying the internal

structure of systems. As with research on tools for specification, the

questions addressed by research on tools for design should concern the
properties of various design tools. An example of such a question is the

identification of the relative merits of HIPO charts and program design

lanquages (PDLs) as media for expressing designs. HIPO charts can be

seen as focusing information on the flow of data through a system,

while PDLs stress the flow of conteol. Systems that use a wide variety

of inputs but do a great deal of processing may be better expressed by

a PDL. A research program to investigate this question, or the more

general question of the importance of data structures versus control

flow, would be of benefit in the selection of design tools.

4.2.3 Interprogrammer Communication. Of all programming practices,

those having the greatest success were standards for commenting. An

explanation was offered for this superiority in terms of the importance

of commun'cating a program's structure to other programmers via means

other than the programming language itself. This suggests investigation

mf the properties of various techniques for expressing a program's struc-

ture. While some work has already been done on the merits of flowcharts,

(e.g., Ramsey, Atwood, and Van Doren, 1978; Shneiderman, Mayer, McKay,
and Heller, 1977), this line of research needs to be expanded. A useful

focus would be on the relationship between the effectiveness o the
communication technique used and the characteristics of the program.

4-3

4.3 Reorientation of Research Direction

A concludinq remark concerns existing human factors research on such

topics as control structures for programming languages and commands for

interactive systems. As was mentioned earlier, superior conventional

practices do not produce superior projects, but inferior resources can

cause projects to fail. Much of existing research has been focused on

identifying optimum characteristics for programming languages or commands.

While such research contributes worthwhile knowledge, a more useful direc-

tion to pursue in reqard to MPP might be to focus on identifying minimum
capabilities that still result in an adequate level of performance to

permit project success. A typical study of this type might be aimed at

identifying a minimum set of control structure features that would allow

effective programs to be written that incorporate the multiplicity of
control functions available in conventional languages.

4-4

5. REFERENCES

Atwood, M.E., Ramsey, H.R., Hooper, J. N., and Kullas, D.A. Annotated
bibliography on human factors in software (ARI Technical Report P-79-1).
Alexandria, VA: U.S. Army Research Institute for the Behavioral and
Social Sciences, June 1979.

Black, R.K.E., Katz, R., Gray, M.D., and Curnow, R.P. BCS software
production data (RADC-TR-77-116). Seattle, WA: Boeing Computer Ser-
vices, Inc.

Boehm, B. Software and its impact: A quantitative study. Datamation,
1973, 19, 48-59.

Branning, W.E., Willson, D.M., Schaenzer, J.P., and Erickson, W.A.
Modern programming practices study report (RADC-TR-77-106). St. Paul,
MN: Sperry-Univac Defense Systems, 1977.

Brooks, R. A model of human cognitive processes in writing code for
computer programs (Unpublished doctoral dissertation). Pittsburgh, PA:
Department of Psychology, Carnegie-Mellon University, 1975.

Brooks, R. Towards a theory of the cognitive processes in computer
programming. International Journal of Man-Machine Studies, 1977, 9,
737-742.

Brown, J.R. Impact of MPP on system development. Redondo Beach, CA:
TRW Defense and Space Systems Group, 1977.

Dahl, O.J., Dijkstra, E.W., and Hoare, C.A.R. Structured programming.
London: Academic Press, 1972.

Donahoo, J., Carter, S., Hurt, J., and Farquhar, R. Software production
data (RADC-TR-77-177). Huntsville, AL: Computer Sciences Corporation,
1977.

Gould, J.D., and Dronsowski, P. An exploratory study of computer program
debugging. Human Factors, 1974, 16, 258-276.

Parnas, D.C. On the criteria to be used in decomposing systems into
modules. Communications of the A.C.M., 1?72, 15, 1053-1058.

Perry, G., and Willmorth, M.E. An investigation of programming practices
in selected Air Force projects (RADC-TR-77-182). Santa Monica, CA:
System Development Corporation, 1977.

5-1

Prentiss, N.H. Viking software data (RADC-TR-77-1681. Denver, CO:
Martin Marietta Corporation, 1977.

Ramsey, H.R., Atwood, M.E., and Campbell, G.D. An analysis of software
design methodologies (Technical Report 401). Alexandria, VA: U.S. Army
Research Institute for the Behavioral and Social Sciences, August 1979.

Ramsey, H.R., Atwood, M E., and Van Doren, J.R. A comparative study of
flowcharts and program design languages for the detailed procedural
specification of computer programs (Technical Report TR-78-A22).
Alexandria, YA: U.S. Army Research Institute for the Behavioral and
Social Sciences, 1978.

Shneiderman, B. Software psychology: Human factors in computer and
information systems. Cambridge, MA: Winthrop, 1979.

Shneiderman, B., Mayer, R., McKay, D., and Heller, P. Experimental
investigation of the utility of detailed flowcharts in programming.
Communications of the A.C.M., 1977, 20, 373-381.

Sime, M.E., Arblaster, A.T., and Green, T.R.G. Reducing programming
errors in nested conditionals by prescribing a written procedure.
International Journal of Man-Machine Studies, 1977, 9, 119-126.

Sime, M.E., Arblaster, A.T., and Green, T.R.G. Structuring the pro-
grammer's task. Jorrnal of Occupational Psychology, 1977, 50, 205-217.

Sime, M.E., Green, T.R.G., and Guest, D.J. Psychological evaluation of
two conditional constructs used in computer languages. International
Journal of Man-Machine Studies, 1973, 5, 105-113.

Stevens, W.P., Myers, G.J., and Constatine, L.L. Structured design.
IBM Systems Journal, 1974, 13, 115-139.

Sussman, G. A computer model of skill acquisition. New York: American
Elsevier, 1976.

Weinberg, G.M. The psychology of computer programming. New York: Van
Nostrand Reinhola, 1971.

Youngs, E.A. Human errors in programming. International Journal of
Man-Machine Studies, 1974, 6, 361-376.

5-2

